# Homeomorphisms. Surfaces

Sasha Patotski

Cornell University

ap744@cornell.edu

November 12, 2014

A homeomorphism between two geometric figures X and Y is a **continuous bijective** map  $f: X \to Y$  such that its inverse  $f^{-1}: Y \to X$  is **also continuous**.

**Example:** Any knot is *homeomorphic* to the unknot.



Figure : But they are not isotopic!

# - 0

• • • • • • • •

æ

# — () Q K T P

Sasha Patotski (Cornell University)

Homeomorphisms. Surfaces

November 12, 2014 3 / 9

• • • • • • • •

∃ → ( ∃ →

æ

# Κ Q Ρ

Sasha Patotski (Cornell University)

Homeomorphisms. Surfaces

∃ → 3/9 November 12, 2014

æ

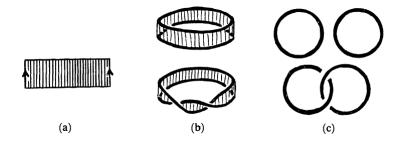


Figure : Cylinder, twisted cylinder and their boundaries











47 ▶

Sasha Patotski (Cornell University)

Homeomorphisms. Surfaces

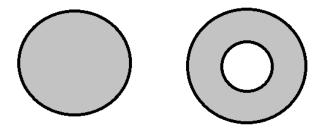


Image: A mathematical states and a mathem

э

# Real life application



#### Figure : Filled doughnut is not the same as regular doughnut!

A (closed) surface  $\Sigma$  is a geometric figure, or a subset of  $\mathbb{R}^n$ , such for any point  $x \in \Sigma$  there exists a small neigbourhood U of x in  $\Sigma$  which is homeomorphic to an open disc in  $\mathbb{R}^2$ .

In other words: a surface is something that looks locally like a plane.

A (closed) surface  $\Sigma$  is a geometric figure, or a subset of  $\mathbb{R}^n$ , such for any point  $x \in \Sigma$  there exists a small neigbourhood U of x in  $\Sigma$  which is homeomorphic to an open disc in  $\mathbb{R}^2$ .

In other words: a surface is something that looks locally like a plane.

 $\mathbb{R}^2$  as well as any open subset of it is a surface.

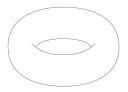
A (closed) surface  $\Sigma$  is a geometric figure, or a subset of  $\mathbb{R}^n$ , such for any point  $x \in \Sigma$  there exists a small neigbourhood U of x in  $\Sigma$  which is homeomorphic to an open disc in  $\mathbb{R}^2$ .

In other words: a surface is something that looks locally like a plane.

 $\mathbb{R}^2$  as well as any open subset of it is a surface.

Sphere: any surface homeomorphic to  $\{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}.$ 

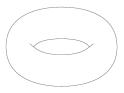
Torus:



• • • • • • • •

э

Torus:



Klein bottle:



Sasha Patotski (Cornell University)

Homeomorphisms. Surfaces